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Abstract-Data on the mean and variance of the temperature field downstream of line sources in turbulent 
pipe flow are presented. We consider both a wall and an elevated source. The existing theory on dispersion is 
used to describe our measurements of mean temperature : wall source measurements agree well with an eddy 
diffusion calculation; data obtained with the source elevated agree with the theories of [S] and [7]. The 
connection of centre-of-mass and relative dispersion with temperature variance is discussed. The ideas 

generated from this discussion are used to qualitatively describe measured data. 
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NOMENCLATURE 

wire diameter ; 
source height; 
eddy diffusivity ; 
length of hot wire; 
turbulence integral scale ; 
exponent in mean velocity power law; 
Legendre polynomial ; 
Prandtl number ; 
radial coordinate; 
pipe radius ; 
Reynolds number ; 
source-dependent constant in model of 
Section 4; 
time ; 
Kolmogoroff time-scale; 
temperature and temperature 
fluctuation; 
Lagrangian and integral time-scales ; 
flux temperature; 
axial mean velocity ; 
turbulent velocities; 
axial coordinate ; 
transformed radial coordinates, 
Section 3 ; 
radial distance from source, Section 4. 

Greek symbols 

6, source size ; 

4 . )9 delta function ; 
tl, Kolmogoroff scale ; 
K, conductivity; 

v, viscosity ; 
0, frequency ; 
Q”, 0x9 02, standard deviation of velocity and of 

particle trajectories ; 
7, correlation delay time. 

Superscripts 

9 dimensional quantities ; 
average quantities. 

1. INTRODUCTION 

THIS study was undertaken to provide data on the 
mean and variance of temperature fluctuations pro- 

duced by a line source in a simple turbulent flow. We 
have chosen to study dispersion in pipe flow because it 
is a well-defined equilibrium flow, devoid of entrain- 
ment interfaces which complicate free turbulent shear 
flows, which has considerable practical application. A 
line source was chosen because it is the simplest to 
construct and is the source to which one’s curiosity is 
first directed. 

A knowledge of the variance of a dispersing con- 
taminant is becoming increasingly important in appli- 
cations of turbulent dispersion; such as in air pol- 
lution, combustion and nuclear safety studies. How- 

--z ever, experimental data on T is notably lacking in 
the literature. Perhaps this is because of the lack of a 
ound theoretical framework within which to interpret 
,uch data. Here we will discuss the origin of the 

intractability of the fluctuation problem for line 
sources, and present some ideas which may shed light 
on it. 

On the contrary, a very reasonable theoretical base 
exists for the problem of mean dispersion. It will be 
used to describe our experimental findings. 

2. APPARATUS AND FLOW MEASUREMENTS 

Apparatus 

Our experiments were performed in a 20cm dia. 
open circuit copper pipe. An upstream development 
length of 25 pipe diameters was allowed, with a test 
section of 15 diameters (Fig. 1). Nichrome wire (d 
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FIG. 1. Diagram of experimental rig and source configurations. 

= 2mm) was used as the temperature source. Both 
wall and elevated sources were used. 

The wall source was constructed by embedding the 
NiCr wire in the inside of an insulating Tufnel ring, 
which was then fitted into a groove in the side of the 
pipe. The elevated source was constructed by suspend- 
ing a circular loop of wire on an X-frame of 3 mm dia 
steel rods. The wire was insulated from the rods and all 
temperature measurements were made in the mid- 
plane of the X. The electrical heating of the wire was 
controlled with a Variac transformer. Measurements 
were made with various wire heating rates. Thereby we 
verified that our normalised results were independent 
of heating rate. 

With the elevated source in position, the RMS axial 
velocity was measured at one pipe diameter down- 
stream of the source and compared to the un- 
disturbed case. No significant disturbance to the 
turbulence was found. 

Mean velocities were measured both by a pitot-tube 
and by a single hot wire. Velocity fluctuations were 
measured with DISA type 55M constant temperature 
anemometers (d = 5pm, l/d = 200). The signal from 

the anemometers was passed through DISA type 
55D30 linearisers, high pass and low pass filtered at 
0.5 Hz and 2.5 kHz, then recorded on magnetic tape for 
analysis. Temperature measurements were made with 
DISA type 55M constant current anemometers (d 
= 1 pm, l/d = 400). The current in the wire was kept 
sufficiently small to ensure that temperature measure- 
ments were not contaminated by velocity fluctuations. 
This was achieved by measuring the temperature in the 
unheated pipe, for various velocities, reducing the 
current until there was no velocity dependence. The 
frequency response of the probes was found to be just 
over 2 kHz, well above the Kolmogoroff frequency in 
the experiments. The temperature signals were ana- 
lysed in the same way as the velocity signals, with the 
obvious exception of the linearisers. Calibration of 
probes took place at the start and end of each run, to 
check for the possibility of drift in the electronics. 
Means, variances and correlations were computed 
from 1.2 x 10’ data points. Larger amounts of data did 
not change the values. 

Before each run it was checked that the flow was 
fully developed by verifying the linearity of the Rey- 
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FIG. 2. Mean velocity profile, Re = 2.5 x lo5 -O-, 
- q -, 1/7th power law, Laufer (Re = 5 x lo’), 
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nolds stress and the constancy of the fluctuating 
velocity at stations 1,2,4,8 and 15 diameters along the 
test section. 

The overall accuracy of mean measurements, based 
on the limitations of the hot-wire equipment and on 
repeatability of measurements, was 5 %, whereas that 
of the RMS was 10%. 

Flow measurements 
Figure 2 shows the mean velocity distribution and 

its seventh power law fit, compared with [l]. The 
difference between the pair of measurements is accoun- 
ted for by difference in Reynolds number. The three 
velocity fluctuation intensities and Reynolds stress are 
shown in Fig. 3. These data agree favourably with 
those of [l], but the u (axial) and u (radial)components 
show some discrepancy when compared with Sabot 
and Comte-Bellot’s [2] data. Because of its relevance 
to dispersion, we include, in Fig. 4, a spectrum of u’. 
Table 1 lists values of friction velocity, integral scales 
and microscales. Values of L, are in agreement with 
Sabot and Comte-Bellot, while L, shows a discrepancy 
at the centre of the pipe. 

3. WALL SOURCE 

D@ision analysis 
The criterion for validity of the eddy diffusion model 

for mean dispersion is that one considers processes on 

Table 1. Turbulence scales 

IA* - skin friction velocity 
fJ (m/s) Re = U,,, D/v u* (m/s) 

4.0 5.0 x lo4 0.18 
9.9 1.2 x 105 0.56 

20.0 2.5 x 10s 1.04 

Stream integral length scales of radial and axial velocities 
(Re = 2.5 x 105) 

(Sabot and Comte-Bellot) 
r LJR L/R LJR LIR 

0.9 1.00 0.06 0.98 0.06 
0.5 1.03 0.09 1.01 0.12 
0.0 0.92 0.12 0.62 0.13 

Microscale (Re = 2.5 x 105) 

r /. (mm) 

0.0 3.62 
0.125 3.31 
0.25 3.59 
0.5 3.80 

a time-scale large compared to the Lagrangian time- 
scale (Tr). Since TL --, 0 near the pipe wall we expect 
eddy diffusion to apply at all times to dispersion from 
the wall source. Hence we consider the equation 

where W indicates the variables are dimensional. Our 
mean velocity is matched reasonably by a power law, 

6 = o[l - (?/R)*]liN(N + 1)/N, 

with N = 7, see Fig. 2. 0 is the radial average mean 
velocity. An eddy diffusivity suitable in the present case 
is 

R = 9.2/Pru,R[l - (F/R)*]. 

This is the simplest form which satisfies the constraints 
di?/dr’=Oat?=O, 

R = 0.2/Pru,R[l - (f/R)*]. 

as F -+ R : the first constraint follows from symmetry, 
the second from surface layer theory, with von 
Karman’s constant equal to 0.4 and Pr the turbulent 
Prandtl number. The parabolic form for Z? has been 
found appropriate in several similar studies of turbu- 
lent dispersion (see [3] Fig. 2). The flux temperature 

R 

T/ 3 2 
f 

fi(r3 T(q:dF/‘lBR* 
0 

is a constant, according to (l), and it, along with R, 0 
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FIG. 3(a). 

and u* are used to non-dimensionalise variables: 

r = F/R, x = iu,lRo, 

T= T/Tf, K = @u,R, U = o/ii. 

This non-dimensionalisation of x eliminates Reynolds 
number dependence and was found to collapse our 
experimental data. We also introduce the new inde- 
pendent variable y = 1 - 2rZ, so that (1) transforms to 
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FIG. 3(c). 

(2) 

FIG. 3(b). 

Here - 1 I y I 1. The solution to (2) satisfies 

s 1 

3 UTdy = 1, 
1 

and initially T= 0 if y # - 1. In order to find a 
solution satisfying these constraints we introduce a 
further coordinate change, 

q =; j’i TJCv)dy = (!+!!,+,, (3) 

r 

FIG 3.(d). 
FIG. 3. Turbulent velocity measurements, Re = 2.5 x 10’. 
-_O-, Laufer, A; Sabot and Comte-Bellot, 0. (a) Axial 
fluctuation profile. (b) Radial fluctuation profile. (c) Tangen- 

tial fluctuation profile. (d) Reynolds stress profile. 
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FIG. 4. Spectrum of radial velocity fluctuations at r = 0.0. 

After the transformation (3), equation (2) assumes a 
complicated form, but in the limit of large N it is 
adequately approximated by 

(4) 

and the initial condition is now simply 

T= 26(z + l), x = 0. (4’) 

The large N approximation is really an assumption 
that the mean velocity shear is only significant in a thin 
layer near the wall. Now that N has served its purpose 
as an ordering parameter in the derivation of (4), we 
will set it equal to 7. 

A solution to (4) and (4’) is 

T= 2 (2n + l)(-)“IP,(z)exp( - 0.8n(n + I)x/Pr) 
“=O 

(5) 

where IP_ is a Legendre polynomial. In additional (5) 
we will want to know the first and second plume 
moments, 

7 = 2 
s 

’ U(r)T(r)r”+’ dr = f. TW-“Wz, (6) 
0 

2 
s 

1 
1 

n = 1, 2. Using (5), 

r(z) = [l - [(z + 1)/2]7’8]1/2 

and the Rodrigues formula for IP,, we tind 

4Jn co r_ 7 g gy (2n + I)(-)“(n + m)! 
n-Om-0 m!m!(n - m)! 

- 0.8 
exp -n(n + 

Pr 
1)x 

(7) 

;r = 1 - $r2(15,8) 

xI(f+n)exp($n(n+ 1)x 
!i 

. 

The value Pr = 0.8 was found appropriate to our 
experimental data. All theoretical results will be pre- 
sented for this value. A turbulent Prandtl number of 
0.8 is well within accepted values. Indeed Robbins and 
Fackerell [4] found Pr = 0.6-0.7 was required to fit 
their data on boundary layer dispersion. 

Measurements, compared with difision analysis 
Measured mean temperatures at various down- 

stream locations are shown in Fig. 5 by solid lines 
with crosses and are compared with the solution (5), 
shown by dashed lines. The experimental profiles are 
non-dimensionalised by the value of T, corresponding 
to that profile. This is because a small amount of heat 
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FIG. 5. Measured profiles of mean temperature, Re = 5 x 104. Numbers indicate x-position, + ~ + 
data, --- diffusion calculation. 

FIG. 6(a). Wall temperature vs x. A, Re = 5 x 104; A. Re 
= 1.2 x 105; -, theory. 

X 

FIG 6(b, c). First and second plume moments, as defined by 
equation (6). Symbols as in Fig. 6(a). 
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FIG. 7. Profiles of T2 at distances downstream of wall source, Re = 5 x 10’. 

was conducted along the pipe wall and it was only after 
2 pipe diameters (x x 0.17) that 7’, became constant. 

Allowing for experimental uncertainty and, in the 
measurements at x = 0.197, for the rapid initial change 
of the profile with x, the agreement between experi- 
ment and theory is quite good. The major discrepancy 
is that the diffusion calculation has heat reaching the 
centre of the pipe more rapidly than observed. 

Further comparison between our diffusion analysis 
and data is given in Figs. 6(a)-(c), where we have 

z 
a 

06 

plotted wall temperature and first and second plume 
moments : symbols are data and solid lines are theory. 
The agreement in all cases is quite good and it can be 
seen that our non-dimensionalisation of x does indeed 
collapse measurements made at Re = 1.2 x 10’ and at 
Re = 5.0 x 104. Of course, dimensional values for x can 
be determined from the information supplied in Table 
1, but the reader might find it helpful if we note that the 
x-units in Fig. 6 are approximately twenty pipe radii. 

FIG. 8. Correlation between temperatures at x = 0.08; r = 0.95 and x = 0.16; r = 0.95 vs time delay. 
Re = 5 x 104. 
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FIG. 9. Value of peak correlation between temperature at x 
= 0.08, r = 0.95 and various downstream locations, plotted 
against the time-delay at which the peak occurred. 0, x 
= 0.085; 0, x = 0.254; V, x = 0.425; A, x = 0.765; Re 

= 1.2 x 10’. ~~~ trend. 

Temperature variance 
We present a set of measurements of temperature 

variance in Fig. 7. These measurements are for Re 
= 5.0 x 104, but the profiles at Re = 1.2 x 10’ show 
similar behaviour, except near the wall. At the higher 
Reynolds number, fluctuations drop suddenly at the 
lowest measurement point (1.9mm from the wall). It is 
possible that this is due to the greater presence of 
small-scale structure adjacent to the wall at higher Re. 

Time-delayed temperature cross-correlations were 
measured with one probe fixed at x = 0.08, r = 0.95 
and the other probe free to move in both axial and 
radial directions. Records were made of the cross- 
correlation as a function of time-delay : Fig. 8 shows a 
typical curve. Here the second probe is at x = 0.16, r 
= 0.95. The peaks of the correlation curves occurred at 
a time delay which, when multiplied by the local mean 
velocity, gave a distance equal to the streamwise probe 
separation. This suggests that axial transport of the 
variance is due mainly to mean convection. 

The data obtained from other measurements, of the 
type illustrated by Fig. 8 are summarised in Fig. 9. This 
figure presents a plot of the peak value of the 
correlation against its time delay, for various probe 
positions. It can be seen that significant correlations 
persist up to a streamwise separation of 9 pipe 
diameters. The dashed line in Fig. 9 is to guide the eye 
along the gradual decrease in correlation with 7. 

In the region near the wall, the integral scale of the 
turbulence is small. Small scale turbulence can smooth 

out temperature fluctuations. Consequently, T” de- 
cays quite rapidly with downstream distance (Fig. 7). 
Because the turbulence near the wall is of smaller scale 
than in the centre of the pipe, the ratio offluctuation to 
mean downstream of a wall source will be low 
compared to that downstream of an elevated source. 
For this reason, and because of the great difficulty of 
understanding the effects of inhomogeneity and mean 

shear on T”, we decided to shift our study of 

FIG. 10. Mean temperature profiles downstream of elevated 
source, Re = 5 x 104. 

fluctuations to a more central region of the pipe where 
turbulence scales were larger and almost homo- 
geneous. Therefore, the elevated source shown in Fig. 1 
was constructed, with the heated wire at r = 0.675. 

4. MEASUREMENTS WITH SOURCE ELEVATED 

Mean temperatures 
For an elevated source we expect the dispersion to 

initially resemble that in homogeneous turbulence. 
Hence, the mean profiles will be Gaussian. Their 
variance will increase as v12 t2 for t << TL and will be less 
than this when t 2 T, [5]. 

In Fig. 10 we show our measurements of T, and they 
appear Gaussian for x 5 0.2. Our first measurement, 
at x = 0.049, is not included because it would go OF 
scale. Measurements at Re = 1.2 x lo5 were similar to 
those in Fig. 10. We estimate the standard deviation 
(a,) of our profiles at x = 0.042, 0.049, 0.085, 0.098, 
0.169 and 0.197 to be ox = 0.03. 0.04, 0.07, 0.08, 0.11 
and 0.13. We would expect 0, 2 v’,?/o N x for the first 
few measurements, and this seems to be borne out by 
observation. 

The last few profiles in Fig. 10 show the peak mean 
concentration descending slightly towards the wall, 
before the profile becomes flat. The peak descends 
because the turbulent diffusivity decreases towards the 
wall. 

The qualitative behaviour we found for the tempera- 
ture profile - Gaussianity, followed by the peak 
descending towards the wall and, finally, by well- 
mixedness - was also found by Shlien and Corrsin [6] 
in their experiments on mean dispersion from line 
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sources in a boundary layer. An analysis of Shlien and 
Corrsin’s experiments is given by Durbin and Hunt 
[7]. Durbin and Hunt describe dispersion from elev- 
ated sources in terms of: a near field, quasi- 
homogeneous, region-where the plume is Gaussian; 
a far-field region, where inhomogeneity plays an 
essential role, but where the diffusion approximation is 
applicable ; and a transition region, matching the near 
field to the far field. This description also applies to the 
present experiments. 

,z The dijiculty of describing T theoretically 

At present, methods for predicting T” are in a stage 
of early development and are beset by uncertainties 
[8]. This is, undoubtedly, a reflection of the complexity 
of the phenomenon being dealt with. In the following 
some new ideas about the physics of production and 
destruction of temperature variance are presented. Of 
course, these physics could be described in terms of 
production, convection, diffusion and dissipation of 

T” (see [8]). But, in the present case, the balance 
between these processes is quite intricate - in parti- 
cular, the often made assumption that production and 
dissipation balance is ‘not valid. The concepts de- 
scribed below enable an equally useful, alternative 
understanding of concentration fluctuations. We hope 
that, in conjunction with existing ideas, they will 

--Z contribute to resolving some uncertainties of the T 
problem. 

We will introduce the fluctuation problem by con- 
sidering an extremely unrealistic model, which de- 
scribes the infinitesimal-time behaviour of dispersion 
from an ideal point source. The intuition gained from 
this consideration will be used to extrapolate to more 
realistic situations. 

Consider heated fluid parcels released into homo- 
geneous turbulent flow and times so short that gra- 
dients of turbulent velocity can be ignored ; in other 
words, consider times small compared to the Kolmog- 
oroff time-scale (t,). It follows that the temperature of 
these parcels satisfies 

aT 
t+u3’T=kV2T (8) 

where II is the turbulent velocity and k the molecular 
diffusivity. Let the source of heated parcels be the plane 
y = 0; so we are considering dispersion in one dimen- 
sion and time, in analogy to the experimental situation. 
The solution to (8) with this source is 

F 

T= (4nkt)“’ 
-----exp[ - (y - Vt)‘/4kt] (9) 

where F is a constant. Assuming u to be a Gaussian 
random variable with mean zero and variance a$ and 
averaging T and T2 over all values of u, gives 

F 

T= (2a(af + 2kt))“’ 
exp[ - y2/2(af + 2kt)] 

(10) 

7-Q = 
F2 

4n(kt(a; + kt))“’ 

x exp[ - y2/2(ai + kt)]. (10’) 

We have written crz = ait’. Although derived for t 
< t,, (10) will clearly describe F for longer times; 
provided 0: is the variance of the position ofdispersing 
particles (and the turbulent PCclCt number is large). 

Such is not the case for equation (10’). (10) and (10’) 
give 

-7 T (Y = 0) u; + 2kt 

P(y = 0) = 2((a; + 2kt)kt)“’ 
- 1. (11) 

If 0: >> kt this implies, incorrectly, that T” >> T2. The 
error is easy to trace. 

The spreading of the Tprofile is determined pri- 
marily by the randomness of ut in (9); or, more 
generally, by randomness of the centre-of-mass of in- 
stantaneous profiles of F. Hence (lo), which accounts 
for this randomness, is a good description of iY Unlike 

T, T‘2 is not a conserved quantity and it depends on 
more than spreading by centre-of-mass dispersion. 
Small scale turbulent eddies [the velocity gradients 
ignored by (9)] can smooth instantaneous profiles of 
T. It is because these profiles are squared before 

computing Y2 that the role of small-scale turbulent 

processes in destroying T2 cannot be ignored. 
Unfortunately, (9) permits only molecular diffusion 

to smooth instantaneous temperature profiles, while, 
in practice, turbulent relative dispersion will be the 
dominant process for smoothing profiles [9]. (The fact 
that the final step in smoothing fluctuations involves 
molecular diffusion is irrelevant at high P&let number, 
because. it is rate-limited by relative dispersion.) Clear- 

,2 ly, T is quite sensitive to small scales of turbulent 
motion. T is insensitive to them, depending mainly on 
the bodily dispersion of individual heated parcels and 
not on the relative motion of pairs of parcels. 

In (10’) IJ~ + kt is the mean-square dispersion of the 
centre-of-mass of a pair of parcels in relative motion 
due to molecular diffusion. This suggests we might, 
more generally, replace crz + kt by c$, the centre-of- 
mass dispersion of two parcels in relative motion due 
to turbulent dispersion. This incorporates the effect of 
turbulent relative dispersion on the spatial structure of 

T2. Its, more important, effect on the amplitude of T2 
is not as easy to deduce. Compounding this difficulty is 
the limitation of (10’) to an infinitesimal source. In 
practice our source was large compared to the Kolmog- 

oroff scale, q, and this also effects the amplitude of T2 
in (lo’). 

It is the factor of (kt)-“’ in (10’) which must be 
replaced by a representation of the effect of relative 
dispersion : as it stands, this term represents decay of 

p by molecular diffusion unaided by small-scale 
turbulence. Durbin [9] presented a stochastic model 
to represent relative dispersion. We describe his results 
below. 
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FIG. 11. T’2 profiles as given by equation (13). 

The model described in [9] relates relative disper- 
sion and contaminant fluctuations for distributed 
sources. A line source is treated there as the asymptotic 
limit of a small distributed source, assuming the source 
to remain large compared to q, while becoming small 
compared to the integral scale, L. After asymptotic 
analysis the expression 

T2 S 
t;l- - -exp( - y2/24) 

2116,62 
(12) 

was obtained. Here S is a constant which depends on 
the source size. The factor S/a, arises from the relative 
dispersion model used by Durbin. It represents the - 
reduction of T2 which occurs when fluid parcels with 

E 

NN 
I- II-- 

' 4 

J 
d 

differing concentrations are mixed together by turbu- 
lent relative dispersion. S increases, slowly, as the ratio, 
L/6, of integral scale to effective source size increases. 
(Actually, Durbin had ox in place of CJ~ but his model 
suggests the modification (12).) g2 depends on the 
instantaneous average velocity of a particle pair 
[(u, + u2)/2] and so, generally, will be less than a,; $JZ 
< a; < a:. 

From (12) and (10) we obtain 

T’= SO, 
T2(y = 0) 

= 2exp( - y2/24 - exp( - ~‘/a:) 

(13) 

When (t/TJ3 c 1, and the source size is << L, we may 

let ~7: z 0f and obtain the T” profiles depicted in Fig. 
11. 

Because of the simplicity of the model used to derive 
it, Fig. 11 should be considered only qualitative. This 
figure suggests that when the effective source size is 

large enough (S small enough) T” will develop a 
double peaked form. The double peak appears then 

because dissipation is able to reduce T2 sufficiently. 
The appearance of the double peak also depends on 

the fact that T2 has a narrower profile than T2, so that 

T2 is comparable to T’in a central region of the plume 
but much smaller elsewhere, equation (13). 

Measurements of temperature variance 
Figures 12(a) and (b) show our measurements of 

T”, non-dimensionalised by Tj. The ratio of fluc- 
tuation to mean temperature is higher than for the wall 
source, although again fluctuations decay very rapidly 

downstream. The 7”’ profiles show a double peak. As 
we have explained, the appearance of the double peak 

in T” is simply an indication of the importance of 
small-scale mixing. Were relative dispersion less effec- 

tive at reducing F the peak would not be double. 

0 049 

1.0 075 05 0.25 0 

FIG. 12(a). 
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FIG. 12. Measured T” profiles downstream of elevated source. Numbers indicate x-position. (a) Re 
= 5 x 104; (b) Re = 1.2 x 105. 

FIG. 13. Data of Fig. 12 replotted as T’*/Ti,, vs y/a,. 0, x = 0.042; V, x = 0.049; 0, x = 0.085; A, x 
= 0.098; D, x = 0.169; 0, x = 0.197. 
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FIG. 14. Spectrum of temperature fluctuations at r = 0.0, scaled on T,. 

Although we found no significant alteration of 
turbulent intensity, at one pipe diameter downstream, 
by the source wire, it is inevitable that a small-scale 
turbulent wake existed behind the wire. This wake 
would make the effective source size larger than the 
heated wire’s diameter. The small-scale mixing by 

wake turbulence would also lead to reduction of T2, 
while having little effect on T. Perhaps this contributed 
to the appearance of the double peak. 

In Fig. 13 we investigate the similarity structure of 

the T” profiles. We have plotted 

T”(r - h/n,)/P(r = h), 

h being the source height. The profiles have similar 

FIG. 15. Time scale, TO, of fluctuations vs downstream 
distance. 

spatial structure when plotted in this way, but the 
amplitudes of the first profiles (at x = 0.07 and 0.08) 
are less than those further downstream. Our expla- 
nation is, again, that small scale turbulence in the wake 

of the source reduces T', relative to TZ, more effec- 
tively than does the larger-scale pipe turbulence. 

Figure 14 shows a measurement of the spectrum of 
temperature variance. Spectral measurements were 
made at x = 0.049, 0.098 and 0.197 for I = 0.625, 0.5 
and 0.75. These spectra were normalised so that as 
oT, -+ 0, cj(cuTB) -+ l/n. To was determined from the 
w + 0 asymptote of the unnormalised spectrum. This 
scaling collapsed the spectra on to the single curve 
shown in Fig. 14. 

One may compare the temperature spectrum with 
the radial velocity spectrum (Fig. 4). They appear to be 
different in form. This is to be expected since the 
connection between velocity and temperature down- 
stream of a line source is quite non-linear. The fact 
that the temperature spectrum is flatter than the 
velocity spectrum indicates that the randomly con- 
vected temperature plume produces temperature fluc- 
tuations which are “noisier” than the velocity 
fluctuations. 

As a crude model, the trace of temperature versus 
time recorded by a measurement probe can be re- 
garded as a sequence of random spikes (see Fig. 11 of 
[lo]). The sharper the spikes, the flatter the spectrum of 
fluctuations. T’he average width of the spikes, is 2T,. As 
it is convected downstream, the instantaneous thermal 
plume will widen. Hence, on the basis of the above 
model, To will increase. Our measurements of T, 
showed a large amount of scatter and are not quanti- 
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tatively reliable. However, measured values of T, 
consistently increased with x. An average profile of T, 
(averaged over measurements made near the centre of 
the mean thermal plume) is presented in Fig. 15. 

- 
Discussion of I”2 measurements 

Fluctuation measurements have been presented at 
locations near to the source. Because all measured 
profiles appear symmetric in the r-direction, we as- 
sume they are not significantly affected by turbulence 
inhomogeneity. At stations further downstream in- 
homogeneity begins to play a role; but, temperature 
fluctuations have decayed drastically by the time these 
are reached. 

Because of this near homogeneity, it is interesting to 
compare our measurements with those made by 
Uberoi and Corrsin [lo] in decaying grid turbulence. 
Uberoi and Corrsin also used a line source. They found 

a nearly self-similar form for T”(y/o)/F2(y = 0) (see 
also [ 111). This form had the appearance of a beheaded 
Gaussian, but no double peaks were found. On the 

plume axis, y = 0, T2/T2 was approximately 0.4 at all 
distances downstream. This value is higher than any 
we observed. But Uberoi and Corrsin’s grid (M 
= 2.54cm) would have produced larger scale turbul- 
ence than our pipe, and this would tend to increase the 
ratio of fluctuation to mean. Thus, our data seem 
consistent with theirs. 

5. CONCLUSIONS 

Mean temperatures 

It was found that mean dispersion from the wall 
source is described well by an eddy diffusion equation 
with parabolic diffusivity. 

Dispersion from the elevated source is described by 
the Lagrangian theory of [5] and its extension to 
inhomogeneous turbulence by [7]. Near the source 
mean profiles appear Gaussian. Further from the 
source the peak temperature descends towards the 
wall and eventually the profile becomes uniformly 
mixed. 

Temperature variance 
Variance decays rapidly in the downstream 

direction. 
The ratio of fluctuation to mean is greater for 

elevated than for wall sources. 
The elevated source produces a double peaked, self 

similar profile of T”. 
The connection of centre-of-mass and relative dis- 

persion with concentration fluctuations was discussed 

and used to describe the measurements of T’2. Large- 
scale eddies cause centre-of-mass dispersion and are 
responsible for producing temperature fluctuations. 
Small-scale eddies cause relative dispersion and are 
responsible for dissipation of fluctuations. They are 
also responsible for the double peak. 
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DISPERSION EN AVAL DES SOURCES LINEAIRES DANS UN 
ECOULEMENT TURBULENT DE CONDUITE 

R&m&On presente des donnees sur la temperature moyenne et sur la variance en aval des sources 
lineaires dans un boulement turbulent en conduite. On considere a la fois une paroi et une source elevee. La 
theorie connue de la dispersion est utilis&e pour d&ire les mesures de temperature moyenne : les mesures 
pour la source en paroi s’accorde bien avec le calcul dune diffusion turbulente; les resultats obtenus avec la 
source ilevee s’accordent avec les theories de [S] et [7]. On discute la relation entre le centre de masse et la 
variance de temperature. Les id&s issues de cette discussion sont utilisees pour dtcrire qualitativement les 

mesures effectutes. 
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DISPERSIQN VON LXNIENQUELLEN BEI DER TURBU~ENTEN ROHRSTR~MUNG 

2usammenfnssung-43 werden Daten iiber den Mitteiwert und die Streuung des Temperaturfeldes 
stromabwiirts von Linienquellen bei turbulenter Rohrstromung mitgeteilt. Betrachtet werden sowohl 
Quellen an der Wand als such erhiihte Quellen. Die bestehende Dispersionstheorie wird benutzt, urn unsere 
Messungen der Mitteltemperatur zu beschreiben. Messungen bei Wandquellen stimmen gut mit Scheindiffu- 
sionsberechnungen i&rein ; Daten, die man von einer erhiiten Quelle erhllt, stimmen mit den Theorien von 
[S] und [7] i&rein. Der Zusammenhang zwischen Massenzentrum und relativer Dispersion in Abhiingig- 
keit von der Temperaturstreuung wird erotert. Die Ideen, die aus dieser Erorterung hervorgehen, werden 

benutzt, urn die gemessenen Daten qualitativ zu beschreiben. 

TYPSYJIEHTHA6 J@f@D(DY3Mfl TEHJIA OT JlHHEtfHbIX HCTOYHHKOB IIPM 
TYPGYJlEHTHOM TEYEHMH B TPYBE 

AH~T~~ - n~~~ae~eHb1 namibre no f2pe.i~~~~ i4 C~~He~aa~paT~YH~M 3nanemraM rehnneparyp- 
HOl-0 nOJll BPfH3 Ii0 IIOTOKY 38 n~He~H~M~ ~CTOYH~KaM~ TellSi IIPH Ty~yneHTHOM TeYeHUR B Tpy6e. 

Pacck.rarpm3arorcr nna cnysaa: BCTOSHIIK na cmnxe n ria HeKOTOpOM paccTonmiu 0T wee. &m 

06%ICHeHKn ilOJIyYeHHbIX @?3)'JIbTaTOB li3MePeHfig CjE4HfiX 3HSIeHlili TeMtIepaTypbI KCIlOJlb3yeTCSl 

H3BeCTHaR IlOJIy3MllHpUYeCfWl TeOpWi Tj'p6)'JleHTHOrO lle~HOCa,OCHOBaHHafl Ha OIUiCaHH&iAHCflepCN4 

nynbCeUH~TeMflepaTypb. npH 3TOM IlOKa3aH0, YTO Pe3j'JIbTaTbI U3Me~HdtDJISl UCTOYHWKB Ha CTeHKe 

~~OBfleTBO~HTe~bHOOU~Cbl~arOTC~MO~e~bH,BHX~BOiiBI13KOCTW.~KC~e~~MeHT~bHbIeA~HH~e, nOJIy- 

YeHHbIe MK ACTO'IHUKI B IIOTOKC, HaXOAllTCR B COOTBeTCTBUW C LiHCIIePCWOHHblMW MOLleJIRMii [s-j 

Ii [73. BbIBOlIbi, I-IOJIyYeHHbie H3 aHWIHTiiYeCKOr0 PWCMOTPeHWI, HCfIOJib3yioTCK DJI5l KaYeCTBeHHOFO 

dj'b%CHeHHfl3KCnep~MeHTa~bHbIX Pe3yJIbTZiTOB. 


